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Until quite recently the major tools in the important and practically significant branch of gas dynamics related to 

pulsation processes in supersonic jets were experimental methods. Other methods which would permk a deeper understanding 

of the essence of such phenomena still remain in a developmental stage. This assertion is also fully applicable to mathematical 
modeling methods, a fact related not so much to reticence on the part of scientists or insufficiently developed mathematical 

techniques, as to fundamental difficulties in modeling a wide class of transient gas dynamic phenomena. It is the essence of 

mathematical methods that they are designed to circumvent unavoidable difficulties in precise calculation while still retaining 
the fundamental features of the true solution. In this light the major difficulty often arises in constructing a correct physical 

model which accurately describes a phenomenon or class of phenomena, since within a complex combination of interrelated 

processes, selection of some single realization sufficiently simple for mathematical realization is often fraught with the danger 
of destroying cause-effect relationships of the true process. 

However the level of development of experimental methods does not fully correspond to the level of problems posed 
regarding the nature of pulsations and their relationship to noise generation processes, since the imperfections of measurement 

techniques in high-gradient and often dirty flows under experimental conditions limit us to measurements of averaged or integral 
values, allowing definition of only one or the other property of a phenomenon, knowledge of the basic features of which 

remains over the horizon. In this situation a consolidation of various methods each providing an incomplete representation of 
the whole may serve as a link to describing the complete mechanism of the process or phenomenon. 

The goal of the present study is to study possibilities of realizing the mechanisms of three-wave resonant interactions 

involving filling of the spectrum of perturbations which define the so-called wide-band noise of the jet. 
We will consider the possibility of describing the experimentally observed longitudinal evolution of coarse-scale shear 

disturbances in a supersonic jet within the framework of a weakly nonlinear stability theory. The actual situation to be 

considered is the following: in the initial portion of a supersonic flow two well-defined peaks exist in the perturbation 

amplitude-frequency spectrum [1, 2] with a narrow range of frequencies (Strouhal numbers Sh = 2a-oJ~0/a(U 0 = 0)). The 
frequency ratio of these peaks is close to 1:2. There can be no doubt that oscillations at the lower frequency, the intensity of 

which varies little down the flow, have an effect on oscillations at the doubled frequency, encouraging their rapid growth, so 

that the latter soon become the dominant mode, defining the carrier frequency of the jet 's acoustic radiation. It is known 

reliably that for Mach numbers greater than or equal to 1.5 the latter are spiral modes with an azimuthal wave number n = 

1 or - 1, although identification of disturbances indicates that near the nozzle section both spiral and axisymmetric n = 0 
modes exist. Calculations of linear characteristics [3] show that both types of oscillations are unstable and have comparable 

increments. 
Thus, if we propose that this pattern of longitudinal perturbation dynamics is defined by the interaction of oscillations 

at different frequencies, the nonlinear mechanism by which azimuthal large scale waves at high frequencies are produced may 
provide the key to an understanding of the physical processes of a free flow at supersonic sPeed. 

In the present study we will consider the mechanism of resonant wave splitting. It is known, for example, that in a 

free (compressed, or uncompressed) infrasonic shear layer a mechanism of subharmonic resonant interaction is realized for two- 
dimensional infrasonic perturbations, for which the phase velocities of harmonics and subharmonics coincide [4, 5]. A 

preliminary study of linear characteristics of unstable oscillations for a supersonic jet has shown that at least for the Mach 

number studied (M 0 = 1.5) the condition of two-wave subharmonic resonance is not realized in the initial portion of the jet. 
Consequently, the resonant mechanism, if exists, must be of a more complicated nature, for example, a three-wave one. 
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The present study will consider two triads for which phase synchronism conditions are satisfied. For the wave system 

in cylindrical coordinates r, ~, x 

3 

p '  = E B ( e x ,  c t )ps(r)e~,  0 = a x  -- cot +n~o + ~p, a = a" + la' (1) 

the resonant triplets relating different-mode disturbances at the higher harmonic frequency oJ 1 (Sh 1) and the lower subharmonic 

frequency co 2 (Sh2) can be of  two types: a pair of  synchronized spiral waves of the Math type (superpositions of modes n 2 = 
1 and n 3 = - 1 )  at the subharmonic frequency and an axisymmetric mode n z = 0 at the harmonic frequency. We will 

arbitrarily call such a triplet symmetric in contrast to the asymmetric one formed by different-mode oscillations n 2 = 1 and 

n 3 = 0 at the lower frequency ~2 and a spiral wave n 1 = 1 at the double frequency ~1. 

The degree of synchronization of the linear waves in such systems is shown in Fig. 1. In the symmetric triad the 

resonance is close to a single-point type (8 = 0.47, t5 being the thickness of the mixing layer). Nonlinear coupling, and hence 

wave interaction, can appear in the direct vicinity of  the nozzle section, with this coupling decreasing further down the flow, 

and for Ac~ r - 0.2 wave development occurs autonomously. In the asymmetric triad, on the other hand, the nonlinear coupling 

is established in the middle of  the initial segment and maintained at significantly larger longitudinal distances. Lower linear 

increments a i accompany this coupling. We will note that for M 0 = 1.5, x = 0.228/8 [6]. 

Mathematical modeling of interaction in resonant triads by numerical integration of the amplitude equations for Aj = 

Bje-a'Jx was considered in detail in [6, 7]. The final form of those expression is 

0A. 
__..z = _ ~A~ + ehKjA,A, , ,  j, l, m = 1, 2, 3, ] # m ~ l. <2) 
ox 

where the first term on the right describes linear amplitude growth of the corresponding wave, and a correction is produced 

by the nonlinear coefficients Kj, formed of quadratic terms of the form u'  8u'/8x . . . . .  appearing in the Euler system and the 

conservation equation for the compressed gas on the basis of which the modeling is carried out; h is the resonant coupling 

coefficient (for exact resonance h = 1, while with increase in detuning Aa r, h --, 0). 
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Figure 2 shows absolute values [Kjl for the triads considered (solid lines, symmetric; dashes, asymmetric triplets). 

On the whole these are complex functions of variable sign. The character of their distribution down the flow permits the a 

priori conclusion that for the first triad growth K in the advection direction is accompanied simultaneously by decrease in h, 
and in regions where for the second triad h - 1 no significant growth in amplitude will occur due to reduction in K, so that 
on the whole the degree of nonlinear interaction will be limited and of the same order in both cases. 

It develops that the interaction has the character of energy redistribution between the interacting waves. It was found 

that amplitude increase at the higher frequency always occurs if the difference in initial levels of the interacting waves is 
significant. As the .intensities of the oscillations at the different frequencies approach each other, the level of transfer into the 

high frequency range decreases and the direction of the process begins to depend on the relative phase orientation of the 

disturbances, as determined by the-net initial phases difference `bo = ~bl - ~b2 - ~b3- Maximum transfer phases were found 
(`bom - 5~r/4 for symmetric and 7r/2 for asymmetric triplets) with minimum transfer occurring into the high frequency range 

at (,bo rn + a-). Between these values at steps of  7r/2 lie phases of  prohibited nonlinear transfer, where amplitude development 

is defined by linear laws. 
Despite the fact that the growth in amplitude of the various modes for the maximum transfer phases is of the same 

order of magnitude, the wave intensities (the quantities recorded in amplitude-frequency spectrograms) will be significantly 

different. We will demonstrate how mean square intensity is calculated, this being a quantity analogous to the degree of 
turbulence of the disturbed flow. By definition Ij = [ (< u '2 > + < v '2 > + < w '2 >)/3U02] 1/2. For the waves of Eq. (1), 

normalized to a characteristic U 0 at the nozzle section Ij = Bje-~jixTj, where the calculated value Tj = [([uj[ 2 + [vii 2 + 

[wj [2)/611/2 is obtained at I Plrnax = 1 for all modes. Note also that for linear waves the amplitudes Bj are constant, while their 
linear dynamics are determined by an exponential factor. For nonlinear couplings Aj can be determined from system (2). 

The distributions of maximum T values, characterizing the properties of both linear and slightly nonlinear waves are 

shown in Fig. 3 by the solid lines for Sh 2 = 0.125 and dashed lines for Sh 1 = 0.25. It is evident that for the axisymmetric 
modes the calculated T values decrease down the flow, which leads to a decrease in the linear intensities I. On the other hand, 

for the spiral modes the T values down the flow increase, especially at the higher frequency, which should lead to an increase 
in the linear intensities. Combining the dynamic characteristics of A and T for the triplets under consideration, we obtain a 

pattern of  wave intensity distribution, to which we can now give a physical interpretatio n. 
One calculation variant is shown in Fig. 4 for symmetric (a) and nonsymmetric (b) triplets. The initial wave intensities 

at the lower frequency were chosen identical here (120 = 130 = 5%), so that the net perturbation intensity at the first peak 
comprises 10%. Waves at the lower frequency for a given low level I10 of the higher frequency wave evolve by a practically 

linear law, so that the level of the first peak remains unchanged. For the higher frequency wave the initial intensity level I10 
was chosen to be of background order [12~ or (120 + I3~ and maximum transfer phases were considered. 

It is evident from Fig. 4 that despite the significant increase in amplitude in the symmetric triplet, that because of the 
reduction T1, the intensity of the axisymmetric wave I 1 increases only by a factor of four times as compared to the initial level. 

on the other hand, for the nonsymmetric triplet the nonlinear interaction can increase the intensity of the spiral wave by two 

orders of magnitude, while the linear level (dashed lines) can increase by a factor of 20 times at the end of the interval studied. 
This permits the conclusion that the mechanism of three-wave resonant intensification may be a realistic technique for 

separating the significant amplification of spiral modes from background oscillations over the initial segment of  the supersonic 
jet. 
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One more problem was considered while studying three-wave interactions - that of generation of traveling longitudinal 

velocity waves. As was shown in [8, 9], within the initial segment of a nonisobaric jet there exists yet one more form of 

unstable oscillations - Taylor-Gort ler  ( T - G )  standing vortex waves, formed because of  curvature of the gas motion 

trajectories within the centrifugal force field produced by the cellular structure of  the initial segment. The spectral composition 

of such natural disturbances indicates a superpositional set of simple harmonic waves with various azimuthal numbers (1 < 

n _< 100). 

The change in spectrum down the flow permks the conclusion that the low-mode components of  the T - G  waves damp 

out quite rapidly. However it is just those waves with low azimuthal numbers which can enter into resonant interaction with 

the travelling coarse-scale shear waves, affecting their amplitude. In the present study we will consider resonant coupling in 

one of the possible triplets. For M o = 1.5 and Shl. 2 = 0.25 such a triad consists of the Mach mode n 1 = 1, n 2 = - 1 ,  and 
the T - G  wave with n 3 = 2, for which ar  3 and w3 - 0. The mathematical provisions for modeling are the same as for the 
triplets considered previously. 

It was also found that interaction in this resonant triad is also possible for transfer of  energy from T - G  waves to 

traveling waves, as well as for the preferential net initial phases. We ill illustrate transfer for three favorable phases; cI, o = 

5r /4 ,  6~r/4, and 77r/4 (lines 1-3 of Fig. 5). The initial intensity of  the T - G  wave was defined by values of  5 and 10%. The 

initial traveling wave intensity Ii~ = I2 ~ corresponded to values of  I3~ where k = 1, 2, 5, 10. It developed that for any 

initial traveling wave intensity in these phases the longitudinal dynamics of T - G  waves is determined solely by linear rules 

(Fig. 5a), i.e., development of  a steady wave is independent of the presence of traveling waves in the flow. Physically, this 

is easily explained by the fact that the value of the centrifugal forces creating T - G  waves is independent of  the degree of  flow 

disturbance. 

From Fig. 5b, it is evident that for a 1 = [AI[ as compared to linear (dashed lines) t'or I10 = 5% (k = 1) and I10 = 

2.5% (k = 2). The thickness 5 = 2 corresponds approximately to the end of the first cell of the non-isobaric jet. Because of 

the a 1 intersection intervals, it is difficult to assign a preference to one of the phases considered. For r = 5~r/4 maximum 

transfer is achieved at the end of  the cell, while at cI, 0 = 6~r/4 this occurs at the midpoint, and for ,I~ o = 7~r/4, at the nozzle 

section itself. 
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From Figs. 5b,c, it is evident that for I3 ~ = 5 and 10% that intensification of the traveling wave is independent of the 

initial level, and is determined solely by the initial intensity of the T - G  wave I30, i.e., occurs within a parametric amplification 
regime. At the end point,of the interval studied for @0 = 5~r/4 the one wave is intensified 1.5 times, and the other, 2.15 times. 

The variant considered here corresponds to a curvature I/R o = 0.05. 
Similar results were found for this same triplet at lower radii of curvature (R o = 10). Figure 6 shows longitudinal 

distributions of T - G  wave intensity (I3 ~ = 5 %) and Mach wave intensity (I1,2 ~ = I3~ for various initial phases @o = (7r/4)i, 
defined by the net initial wave phase shift. With increase in curvature the degree of influence on the traveling wave increases 

somewhat, but its character remains unchanged. 
The presence of regions of significant reduction in traveling wave intensity as compared to the linear levels permits 

the proposition that the literally reproduced longitudinal turbulence may suppress, rather than intensify shear instability 
travelling waves. 

The effect for lower frequencies at Sht, 2 = 0.125 proved to be even less, which corresponds to the first peak in the 

band of defined frequencies described above Figure 7 shows that for this frequency the effect of  the T - G  wave on the Mach 

wave is limitingly small. 

The modeling we have performed permits the conclusion that the experimentally observed reduction in intensity of the 
Taylor -Gor t le r  mode n = 2 is controlled by intrinsic dynamics, upon which Mach mode shear waves have practically no 

effect. For those latter waves, the presence in the initial segment of a stationary longitudinal turbulence creates conditions for 
some growth, achieved in a parametric resonance regime given favorable phase relationships among the waves under 
consideration. 

The relative phases found above for which significant reduction in amplitude and intensity of traveling waves occurs 

allow us to assume the presence of longitudinal vortices to be a stabilizing factor, which under certain conditions inhibits 

longitudinal growth of disturbances in the wide-band spectrum of a supersonic jet. 

A portion of this study was carried out with the trmancial support of the Russian Fund for Fundamental Studies (project 
code 93-013-16577). 
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